理论上讲纳米机器人是大量原子或分子按确定顺序聚集而成为具有确定功能的微型器件,但制造纳米机器人不一定是从"零"开始。机器人是由零件组装而成的,纳米机器人的零件可以是单个的原子或分子,但是更现实的是具有一定结构和功能的原子团或分子的集合。利用现实存在的功能器件组装纳米机器人比从一个原子一个原子地构建机器人更为现实可行。生物分子是自然界存在的最丰富的构建纳米机器人的零件的来源,现实可行的途径是按照分子仿生学的原理,利用大量存在的天然分子原器件,设计组装纳米机器人。下面列举几种研制纳米机器人的可能途径:
1.化学模拟
化学家很早就开始模拟酶分子的活性中心结构制造"模拟酶",这实际上就是在研制纳米机器人,因为每一个酶分子都是一个活生生的纳米机器人。但是化学家只模拟了酶活性中心功能基团在空间位置上的配置,而没有模拟出功能基团在催化底物反应时出现的动作,这种动作应当足以打开一个化学键或者合成一个化学键。因此,化学模拟还有很长的路可走,一旦模拟出具有催化动作的"模拟酶",化学合成的纳米机器人也就诞生了。
2.利用分子的自组合原理装配机器人
生物分子在各个层次上存在着自组合的性质,利用分子的自组合特性装配纳米机器人是一个值得探索的途径。比如构成生物膜的脂类分子是一端亲水另一端疏水的双亲性分子,它们在水溶液中会自组合成双分子层微囊泡,科学家利用这种微囊泡把抗癌药包裹起来,避免药物对正常细胞的杀伤作用。为了使包裹了抗癌药物的微囊泡能识别癌细胞,科学家利用了抗体分子对抗原分子的专一识别作用,把一种专一识别癌细胞特有抗原分子的抗体分子装在微囊泡表面,如此制成的药物载体如同"生物导弹",可以专一地识别和杀死癌细胞。这不就是纳米物理学家倡导的定向杀死癌细胞的纳米机器人吗?
3.利用生物分子作为分子功能器件组装纳米机器人
P酶作为分子动机的研究已经在西方形成热点领域,*和美国双方已经呈现出强烈的对峙竞争局面。分子动机问世的意义决不仅仅是制造一种纳米机器人的动力装置,而是开辟了一个新的探索领域,这个领域就是研究生物分子作为微型机器人原器件的可能性。原则上所有的生物分子都是纳米机器人或组成纳米机器人的零件,生物分子的自组合性质就是零件组装的原理依据。因此,开展生物分子作为纳米器件特性和组装原理的研究应当及早倡导和支持。
+++++++++++++++++++++++++++++++分割线++++++++++++++++++++++
第一时间更新《小农经济时代》最新章节。